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Abstract

We have developed a comprehensive set of analytical and computational tools to ex-
ploit visual data for the purpose of control and interaction with complex, dynamic and
uncertain environments. The accomplishment of the goals set forth in the original pro-
posal was articulated into three parallel research tracks. (1) Tracking; focused on the
establishment of correspondence of low-level statistics across temporal samples, includ-
ing the development of representations that are invariant to local illumination changes,
co-variant with respect to finite-dimensional group transformations, and insensitive to
non-invertible transformations due to non-group deformations, partial occlusions etc.
[28, 23, 18, 26, 30, 4, 17, 24, 1, 25]. (2) Motion Estimation: image motion established
during tracking can be due to ego-motion, as well as to motion of independently moving
objects in the scene. We have developed methods for multiple motion estimation and
segmentation as well as techniques for integration of visual and inertial measurements
that helped us exceed and push forward the state of the art in Visual SLAM (simultane-
ous localization and mapping), which we have pioneered in years past [2, 12, 16, 11, 29].
The two lines of work above have then been instrumental in (3) designing techniques for
classifying and recognizing dynamic events from video [6, 15, 20, 21, 14]. The results
of such a research program have been documented in a number of publications in the
top journal and conference venues. In addition to targeted progress in the area above,
during this project we have also developed basic image analysis tools for low-level
processing [9, 19]. The software systems developed have been distributed worldwide
through an open-source repository called VLFeat (www.vlfeat.org) that has become
one of the standard libraries in industry, academia and government, together with the
OpenCV.
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1 Summary of Research Achievements

In this section we briefly summarize the technical achievements during this project. Details
can be found in the published references.

1.1 Invariance in Representation

One of the central issues in processing visual data is to handle the large nuisance variability
in the data: Images are a↵ected by a large number of factors that are irrelevant for the task
at hand. For instance, in decision tasks – say the detection, localization, recognition and
categorization of an object or scene – vantage point is irrelevant, and so is illumination. In a
control task – say tracking, docking, manipulation, etc. – reflectance properties of the scene
are irrelevant, in addition of course to the more traditional nuisance factors such as spatial
and range quantization, sensor noise, etc.

The Holy Grail would be the ability to infer from the data a “representation” that is at
the same time invariant to nuisance factors, and “lossless” with respect to the task. In some
cases, this is possible, as one can design statistics that are invariant to a particular nuisance
and su�cient for a particular task. More often, however, one has to settle for a tradeo↵
between insensitivity to nuisances and informativeness for a particular task.

During the course of this project we have been able to precisely characterize the conditions
under which it is possible to design a maximal invariant (to a nuisance) that is also a su�cient
statistic (for a task). In [27] (with G. Sundaramoorthi, P. Petersen and V. S. Varadarajan),
we have shown that even if the data (images) had infinite-resolution, and the nuisances
(viewpoint and illumination) were drawn from an infinite-dimensional set, it is possible to
extract an intermediate representation that (a) is invariant to the nuisance (so it contains
only “information”), (b) is a su�cient statistic (so it contains all the “information”), and (c)
it is discrete (it is supported on a zero-measure subset of the image domain). So, one can
abstract discrete “symbols” from continuous data, and lose nothing when it comes to using it
for decision and control.1 In fact, the coding length of this internal representation is what I
have suggested as a definition of some notion of information, called Actionable Information,
following ideas that date back to J. J. Gibson [10], rather than the traditional notion of
Information as Entropy of the data pioneered by Wiener and Shannon.

The resulting theory can be interpreted as a generalized sampling theory but not for the
purpose of transmission and storage of data (as implicit in Shannon’s theory), but for the
purpose of using data for decision and control tasks. We have shown that under certain
conditions one can take an infinite-dimensional signal (that is not band-limited, since there
is no meaningful notion of band for sensing modalities subject to scaling phenomena) and
reduce it to a finite set without any loss of information. This is, of course, not Shannon’s
information, as one would not be able to reconstruct the original signal. It is Gibson’s
information, in that the reduced representation is as good as the data for the purpose of any
decision task that requires viewpoint and contrast invariance.

1Of course, if one were to use it for compression or transmission, the two tasks implicit in traditional
Information Theory, then data analysis is by definition lossy.
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While the construction in [27] works for any nuisance that has a group structure, for
instance changes of viewpoint away from occlusions, and changes of illumination away from
cast shadows, the latter visibility artifacts are not invertible, and therefore [27] cannot be
applied. If object “A” is occluded by object “B” in an image, there is no processing of the
image that will give us back object “A”. A simple observation, that dates back to Gibson
[10], resolve the conundrum are hold the key to enabling the development of a consistent
theory of perception and action. Indeed, occlusion and quantizations are not invertible
for a passive observer. However, if one can control the sensing process, then occlusions and
quantization become invertible! Want to see object “A”? Just move around object “B”. Want
to resolve the fine structure in the far field? Move closer! This has enabled us to build on
the theory of Actionable Information and establish a relation between the control authority
of the sensing process and the gap between the Complete Information and the Actionable
Information measured at the current time instant. Thus this “control-authority/actionable
information” tradeo↵ extends “rate/distortion” theory when the underlying task is not the
storage or transmission of data, but its use in decision and control tasks. This construction
is described in [22].

This project has enabled us to establish a tight link between sensing and control, in the
sense that passive sensing is subject to the usual limits imposed by traditional Information
Theory. However, active sensing entailing control of the sensing process, enables closing the
Actionable Information Gap. As Gibson put it in 1950, we move in order to see, and we see

in order to move. The concept of Actionable Information is precisely the tie between sensing
and control.

1.2 Occlusion detection and handling

There are two phenomena that a↵ect that data formation process for imaging modalities
that are critical in the analysis: scaling and occlusion. Scaling (due to changes of viewpoint
under perspective imaging) causes the continuous limit to be part of the analysis (it is not
possible to “discretize the world” and reduce the analysis to the discrete, because one can
always move far enough away that any discretization is insu�cient; conversely, the closer
one get to an object or scene, the more details are being revealed, so the “source”, to think
in Communication terms, has infinite capacity). Occlusion is what makes control relevant.
Consequently it should be no surprise that a significant portion of this research program has
focused on occlusion handling and detection. The first breakthrough has been in the area of
variational tracking.

Occlusion and clutter in variational tracking

In an influential 1989 paper, Mumford and Shah formalized the problem of segmenting an
image (partitioning its domain into regions that exhibit smooth statistics) as a variational
optimization problem. Their model has undergone numerous extensions and simplifications
and is now widely used in applications ranging from tracking to medical imaging. The power
of the Mumford-Shah model rests on the fact that it phrases a classification problem (clas-
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sifying each point of the domain as either “target” or “background” where the target by
definition occludes the background) as a regression problem (find the boundary by minimiz-
ing an energy functional). This can be formalized as a convex optimization, provided that
there is one, and only one, target. Detection based on Mumford and Shah’s approach finds
a target even when none is present, and fails catastrophically when more than two regions
are present. Several attempts to extend this approach to multiple regions or targets, the
so-called “clutter problem”, have been proposed, but have severe shortcomings. Some entail
combinatorial optimization, others employ local searches based on heuristic choices of neigh-
borhoods, and none preserves the convex nature of the optimization. In [29], we have drawn

Figure 1: Segmentation of a heart chamber using Chan & Vese’s method (top-right, red
curve), starting from the initial condition (top-left), is impeded by the fact that the back-
ground does not fit the constant model. Extension to multi-phase segmentation (bottom-
left, each region is color-coded, and the object of interest corresponds to the white region) is
complex and highly non-convex. Extension to more complex models, such as Mumford and
Shah’s (bottom-right) is also laborious. In both cases, precious modeling and computational
resources are expended to capture the structure of the background away from the object of
interest.

from the literature on quickest set-point change detection to define a notion of locality that
is controlled by the statistics of the data. This is illustrated in Fig. 2. Intuitively, consider-
ing a one-dimensional example (a “scan-line”), if the statistics in the region of interest are
smooth, or at least continuous, then a discontinuity is well-defined and can be determined
instantaneously (i.e., it is a point property). However, for a digital image that is everywhere
discontinuous, discontinuity can be phrased as a hypothesis testing problem, and cannot be
determined by considering an infinitesimal neighborhood. Instead, the smallest size of the
neighborhood that can be considered for a given probability of error in the hypothesis test
depends on the statistics of the “inside” region: The smoother the region, the smaller the
“outlook” region that can be considered. This yields a model whereby the outlook region has
an adaptive size that is regulated by the (estimated) statistics inside. This enables decoupling
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c d

Figure 2: One scanline from Fig. 1: The detection of the boundary c should be performed
as soon as possible, d, so as not to have irrelevant background impinge on the decision (past
the right-most dashed line).

Figure 3: Flatworm: The C-V model, as well as the full M-S model, fail to detect the
boundaries of the flatworm. Our model, however, successfully detects it despite the complex
background (right).

multiple regions, and solving multiple convex problems on-line, where multiple initializations
that converge to the same region are merged in a voting process. Unlike methods based on
logical combinations of level set functions, local solutions do not a↵ect each other, and can
be computed in parallel. Figure 5 illustrates a representative example of comparison with
classical active contours, and Figure 6 shows some quantitative comparisons.

While so far we have not specified what we mean by “statistics”, and have implicitly
assumed that the default statistic is the gray-scale level of the pixel, in natural images more
complex statistics have to be considered, and they have to be defined at multiple scales. In
[7] we have described distributional statistics and studied entropy regimes for multi-scale
and stable analysis. In addition to static properties of the images, we have also commenced
studying motion properties in this framework in [3].

Occlusion Detection

As already pointed out, occlusion phenomena play a central role in remote sensing, espe-
cially passive modalities such as EO and IR, where one has no control on the source signal
(illumination). We have devoted considerable resources into the development of robust and
e�cient methods for occlusion detection, and we are pleased that our approach, presented in
[1], has proven to exceed the state of the art both in terms of performance (precision/recall)
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as well as computational e�ciency.
In fact, we have shown that the problem of simultaneously estimating the indicator func-

tion of the occluded domain, as well as the domain deformation of the image (approximated
by the optical flow under assumptions of Lambertian reflection and constant illumination)
can be framed as a joint variational optimization problem that, under standard relaxation,
can be shown to be a convex optimization problem. In [1] we have shown that the recently
developed extended Lagrangian schemes known as “split Bregman methods” exceed the opti-
mal (first-order) scheme due to Nesterov, both in terms of precision, as well as computational
e�ciency, by more than an order of magnitude. Our occlusion detection scheme has been
distributed in source format and independently validated by other researchers.

Occlusion detection is important because it provide local cues of depth ordering, which in
turn is critical for object detection, figure-ground segmentation, initialization of tracking etc.
In particular, in [4] we have shown that, once occlusion detection between adjacent frames
has been performed, global consistency cues can be integrated using linear programming!
This yields an extremely e�cient schemes for what we call detachable object detection, that
is the detection of objects that are surrounded by the medium, except for their point of
contact with the ground. This includes vehicles, people, animals, etc. This is the first time
that such a di�cult problem, that relates to motion segmentation, layer decomposition, and
other notoriously di�cult problems in dynamic visual processing, is shown to be solved using
linear programming.

1.3 Filtering and prediction in the space of curves (“object-level
filtering and prediction”)

In order to integrate the results described above into a robust tracking framework, a model
with predictive capabilities has to be employed. While this is standard in finite-dimensional
state-spaces, deforming objects are best described as infinite-dimensional regions, or their
boundaries. Therefore, a filter for an infinite-dimensional state space has to be designed.
In [26] we have designed Luemberger-like observers for infinite-dimensional state-space that
have a quotient structure under an infinite-dimensional Lie group (in the case of image
domain deformations, this is the set of plane di↵eomorphisms). Representative examples are
shown in Figure 3.

Other contributions to this line of work include [20], where local templates are tracked
independently and used for classification and time series, and [21], whereby the time series
is assumed to be the output of a dynamical model, representing nuisance dynamics, and the
“information” is encoded in the input, that is restricted to have sparse temporal gradients
(“spikes”). Also along this line, in [8] we have proposed a filtering scheme to estimate, and
then eliminate, the finite-dimensional group component in the data.

While a significant body of work has been devoted to tracking, some critical problems
remained largely unsolved: The initialization problem, whereby one wishes to automatically
detect multiple putative targets, without manual initialization [29], and the problem of
predicting not only the coarse motion, but also the object-specific deformations [26]. We
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have moved the state of the art forward by integrating occlusion detection into detachable
object detection, and thence into tracking multiple deforming objects in the scene. This
provides a complete description of all independently moving objects, organized in depth
layers, from which the user can perform queries and/or select targets of interest.

Figure 4: Detached object detection primes tracking in complex cluttered backgrounds.

1.4 Vision-based navigation, mapping, localization

Our laboratory has pioneered the development of vision-based navigation, from the first ever
demonstration of a real-time structure from motion system in 2000 (a system that takes
live video from a regular camera and estimates three-dimensional trajectory of the camera
as well as three-dimensional structure of the scene), to the latest visual-inertial integration
system that has been recently published in the International Journal of Robotics Research.
The system has been tested in open-loop on sequences up to more than 30Km with drift
ranging from 0.1% to 0.5% of the traversed space. In addition, we have perfected the location
recognition scheme that allows loop-closure and annihilation of the drift to within millimeter
localization error, and the definition and real-time search of locations. The system has been
implemented on an embedded platform and operates in real-time with up to tens of thousands
of locations.

The final description of the system that we have been developing for the past 5 years
is now complete and has appeared in print in [12]. We have also completed the software
system CORVIS, and released an update (CORVIS2) that has been independently tested
and validated.

1.5 Multiple Instance Filtering

In this latest development [30], we have developed an approach to filtering the state of
a dynamical model that combines multiple-instance learning and semi-supervised learning.
The basic premise is that modern tracking - unlike traditional tracking of point targets - can
be framed as a learning problem, where one is given training sets (for instance, “examplars”
or “samples” of what the target looks like, or simply a “bounding box” in the initial frame),
and then wants to classify novel data for the presence, location, identity of (possibly multiple)
targets. Unlike traditional tracking, the dynamics is not deterministic, but rather a prior in
the detection problem.
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Figure 5: Long Outdoor reconstruction. Left: Our reconstruction of a 30 km long
driving sequence, overlaid on an aerial view. Error is less than 0.5%. Right: Detail of
area showing the position of point features and the motion reconstruction, overlaid to an
orthographic aerial image.

The challenge is that this problem does not fit the mold of traditional decision theory
or machine learning, since the training set does not capture the variability under which the
target is going to appear. One rarely has a training set of the target in all possible positions,
orientations, poses, illumination, partial occlusion, etc. However, one would still like to
detect the target under such a range of variability.

Tools from semi-supervised learning can be used to utilize all ”labeled” data (e.g. given
exemplar or bounding box) as well as all the given ”unlabeled data” (images up to the
”previous time” ’t-1’ where the target might be present, but its location is unknown) in
order to classify the current frame (at time ’t’) by integrating them with assumptions on the
dynamics of the target or the sensing platform.

In addition, the labeling can be imperfect: For instance, one often provides a ”bounding
box” of the target, that includes pixels-on-target as well as part of the background, and one
rarely has a precise pixel-level segmentation of the target. Multiple-instance learning is a
framework to exploit ”weak labeling” where one is given negative samples (e.g. pixels that
for sure are not on target, for instance those outside the bounding box) as well as a ”positive
bag” that contains some positive, but also some negative samples (e.g. the bounding box
that contains pixels-on-target as well as pixels outside the target, without knowledge of which
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Figure 6: Comparison of state-of-the-art trackers: The P/N Tracker [13] (first row)
drifts because the target changes appearance and never returns to the initial configuration,
and never recovers past frame 55. MIL Track [5] (second row) locks on a static portion
of the background and fails at frame 208. Both phenomena are typical of tracking-by-
detection approaches based on semi-supervised learning without explicit side-information.
Our approach [30] maintains consisten track throughout the sequence despite large scale
changes, changing background, and significant target deformation (third row). Of course,
this approach fails too (failure modes: bottom row), when the target is motion-blurred
or subject to sudden illumination changes (frames 349 and 403 respectively) but quickly
recovers (frames 352 and 417 respectively), missing 17 frames out of 1496 (98.86% tracking
rate). For details see [30].

is which).
We have integrated filtering in a classical non-linear point-estimate of the filtering den-

sity,with semi-supervised and multiple-instance learning, and shown that we can maintain
tracking over long sequences for targets that are undergoing significant geometric, topolog-
ical and photometric changes, despite a single ”training set” consisting of a bounding box
around the object of interest in the first frame. A representative set of results is shown in
Fig. 6 in comparison with other state-of-the-art trackers.
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